ダウンロード数: 97

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ACCESS.2022.3156073.pdf2.79 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorFlanagan, Brendanen
dc.contributor.authorMajumdar, Rwitajiten
dc.contributor.authorOgata, Hiroakien
dc.contributor.alternative緒方, 広明ja
dc.date.accessioned2023-02-17T10:48:32Z-
dc.date.available2023-02-17T10:48:32Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2433/279306-
dc.description.abstractWhile data privacy is a key aspect of Learning Analytics, it often creates difficulty when promoting research into underexplored contexts as it limits data sharing. To overcome this problem, the generation of synthetic data has been proposed and discussed within the LA community. However, there has been little work that has explored the use of synthetic data in real-world situations. This research examines the effectiveness of using synthetic data for training academic performance prediction models, and the challenges and limitations of using the proposed data sharing method. To evaluate the effectiveness of the method, we generate synthetic data from a private dataset, and distribute it to the participants of a data challenge to train prediction models. Participants submitted their models as docker containers for evaluation and ranking on holdout synthetic data. A post-hoc analysis was conducted on the top 10 participant’s models by comparing the evaluation of their performance on synthetic and private validation datasets. Several models trained on synthetic data were found to perform significantly poorer when applied to the non-synthetic private dataset. The main contribution of this research is to understand the challenges and limitations of applying predictive models trained on synthetic data in real-world situations. Due to these challenges, the paper recommends model designs that can inform future successful adoption of synthetic data in real-world educational data systems.en
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectSynthetic learner dataen
dc.subjectstudent modelingen
dc.subjectdata sharingen
dc.subjectdata challengeen
dc.titleFine Grain Synthetic Educational Data: Challenges and Limitations of Collaborative Learning Analyticsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleIEEE Accessen
dc.identifier.volume10-
dc.identifier.spage26230-
dc.identifier.epage26241-
dc.relation.doi10.1109/ACCESS.2022.3156073-
dc.textversionpublisher-
dcterms.accessRightsopen access-
datacite.awardNumber20H01722-
datacite.awardNumber21K19824-
datacite.awardNumber16H06304-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H01722/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K19824/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-16H06304/-
dc.identifier.eissn2169-3536-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleKnowledge-Aware Learning Analytics Infrastructure to Support Smart Education and Learningen
jpcoar.awardTitleLearning Support by Novel Modality Process Analysis of Educational Big Dataen
jpcoar.awardTitle教育ビッグデータを用いた教育・学習支援のためのクラウド情報基盤の研究ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons