ダウンロード数: 97
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
ACCESS.2022.3156073.pdf | 2.79 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Flanagan, Brendan | en |
dc.contributor.author | Majumdar, Rwitajit | en |
dc.contributor.author | Ogata, Hiroaki | en |
dc.contributor.alternative | 緒方, 広明 | ja |
dc.date.accessioned | 2023-02-17T10:48:32Z | - |
dc.date.available | 2023-02-17T10:48:32Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | http://hdl.handle.net/2433/279306 | - |
dc.description.abstract | While data privacy is a key aspect of Learning Analytics, it often creates difficulty when promoting research into underexplored contexts as it limits data sharing. To overcome this problem, the generation of synthetic data has been proposed and discussed within the LA community. However, there has been little work that has explored the use of synthetic data in real-world situations. This research examines the effectiveness of using synthetic data for training academic performance prediction models, and the challenges and limitations of using the proposed data sharing method. To evaluate the effectiveness of the method, we generate synthetic data from a private dataset, and distribute it to the participants of a data challenge to train prediction models. Participants submitted their models as docker containers for evaluation and ranking on holdout synthetic data. A post-hoc analysis was conducted on the top 10 participant’s models by comparing the evaluation of their performance on synthetic and private validation datasets. Several models trained on synthetic data were found to perform significantly poorer when applied to the non-synthetic private dataset. The main contribution of this research is to understand the challenges and limitations of applying predictive models trained on synthetic data in real-world situations. Due to these challenges, the paper recommends model designs that can inform future successful adoption of synthetic data in real-world educational data systems. | en |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.rights | This work is licensed under a Creative Commons Attribution 4.0 License. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Synthetic learner data | en |
dc.subject | student modeling | en |
dc.subject | data sharing | en |
dc.subject | data challenge | en |
dc.title | Fine Grain Synthetic Educational Data: Challenges and Limitations of Collaborative Learning Analytics | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | IEEE Access | en |
dc.identifier.volume | 10 | - |
dc.identifier.spage | 26230 | - |
dc.identifier.epage | 26241 | - |
dc.relation.doi | 10.1109/ACCESS.2022.3156073 | - |
dc.textversion | publisher | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 20H01722 | - |
datacite.awardNumber | 21K19824 | - |
datacite.awardNumber | 16H06304 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H01722/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K19824/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-16H06304/ | - |
dc.identifier.eissn | 2169-3536 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | Knowledge-Aware Learning Analytics Infrastructure to Support Smart Education and Learning | en |
jpcoar.awardTitle | Learning Support by Novel Modality Process Analysis of Educational Big Data | en |
jpcoar.awardTitle | 教育ビッグデータを用いた教育・学習支援のためのクラウド情報基盤の研究 | ja |
出現コレクション: | 学術雑誌掲載論文等 |
このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス