ダウンロード数: 144

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
jor.2022.032.pdf7.6 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKevkhishvili, Rusudanen
dc.date.accessioned2023-03-14T01:56:14Z-
dc.date.available2023-03-14T01:56:14Z-
dc.date.issued2022-06-
dc.identifier.urihttp://hdl.handle.net/2433/279659-
dc.description.abstractThis paper provides a new framework for the detection and quantification of change in the corporate credit quality of established companies. These companies are important players in the economy, and analysis of their creditworthiness is of great interest to investors. Our approach is based on the observation that the deterioration of credit quality in established companies is a long-term process, because these firms use their resources as well as strong customer and supplier relationships to respond to market and technological changes. Based solely on the realized path of the stochastic process that represents creditworthiness, we propose an economically plausible endogenous mechanism that governs the shift in the long-term mean of the process. Specifically, we construct a model that detects a change in the mean-reversion level of an Ornstein–Uhlenbeck process representing the company’s leverage. Our model captures this change based on a number of realized upcrossings of a certain level (estimated from data) by the process itself, without introducing an additional source of uncertainty. Our approach is computationally simple and provides an efficient tool for monitoring changes in quantities related to credit quality, such as default probability.en
dc.language.isoeng-
dc.publisherInfopro Digital Services Limiteden
dc.rights© 2022 lnfopro Digital Risk (IP) Limiteden
dc.rightsThe full-text file will be made open to the public on 12 JULY 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.subjectcredit qualityen
dc.subjectcredit risken
dc.subjectdetectionen
dc.subjectOrnstein-Uhlenbecken
dc.subjectmean reversionen
dc.subjectlong-term meanen
dc.titleA new approach to detecting change in credit qualityen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Risken
dc.identifier.volume24-
dc.identifier.issue5-
dc.identifier.spage51-
dc.identifier.epage73-
dc.relation.doi10.21314/jor.2022.032-
dc.textversionpublisher-
dcterms.accessRightsopen access-
datacite.date.available2023-07-12-
datacite.awardNumber21K13324-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K13324/-
dc.identifier.pissn1465-1211-
dc.identifier.eissn1755-2842-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle拡散過程のダイナミクスにおける変化の検出と信用リスク分析への応用ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。