ダウンロード数: 32
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2234-12.pdf | 10.89 MB | Adobe PDF | 見る/開く |
タイトル: | Computation of weighted Bergman inner products on bounded symmetric domains and Parseval-Plancherel-type formulas for ($Sp$($r$, $mathbb{R}$), $Sp$($r'$, $mathbb{R}$)$times$$Sp$($r''$, $mathbb{R}$)) (Various Issues on Representation Theory and Related Topics) |
著者: | Nakahama, Ryosuke |
著者名の別形: | 中濱, 良祐 |
発行日: | Nov-2022 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2234 |
開始ページ: | 110 |
終了ページ: | 124 |
抄録: | Let (G, G') = (G, (G[δ]⁻)₀ ) be a symmetric pair of holomorphic type, and we consider a pair of Hermitian symmetric spaces D' = G'/K' ⊂ D = G/K, realized as bounded symmetric domains in complex vector spaces P₁⁺ := (p⁺)[δ] ⊂ p⁺ respectively. Then the universal covering group G~ of G acts unitarily on the weighted Bergman space H[λ](D) ⊂ O(D) = O[λ](D) on D for sufficiently large λ. Its restriction to the subgroup G~' decomposes discretely and multiplicity-freely, and its branching law is given explicitly by Hua-Kostant-SchmidKobayashi's formula in terms of the K~'-decomposition of the space P(p₂⁺) of polynomials onp₂⁺ := (p⁺)⁻[δ] ⊂ p⁺. Our goal is to understand the decomposition of the restriction H[λ](D)|[G~'] by studying the weighted Bergman inner product on each K~'-type in P(p₂⁺) ⊂ H[λ](D). In this article we mainly deal with the symmetric pair (G, G') = (Sp(r, ℝ), Sp(r', ℝ) x Sp(r'', ℝ)). |
URI: | http://hdl.handle.net/2433/282927 |
出現コレクション: | 2234 表現論とその周辺分野における諸問題 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。