このアイテムのアクセス数: 14

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2269-02.pdf11.57 MBAdobe PDF見る/開く
タイトル: FINITE CRYSTALLINE HEIGHT REPRESENTATIONS AND SYNTOMIC COMPLEXES (Algebraic Number Theory and Related Topics)
著者: ABHINANDAN
発行日: Dec-2023
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2269
開始ページ: 10
終了ページ: 22
抄録: Using finite crystalline height representations and their naturally associated invariants, we study local and global syntomic complexes with coefficients. The text is organized as follows. After briefly recalling the 𝑝-adic crystalline comparison theorem and importance of syntomic methods in its proof we pose a question on syntomic complex with coefficients. To answer our question, we quickly recount the theory of finite crystalline height representations developed in [Abh21] and show that Galois cohomology of such representations (upto a twist), is essentially computed by (Fontaine-Messing) syntomic complex with coefficients in the associated 𝑭-isocrystal. In global applications, for smooth (𝑝-adic formal) schemes, we show a comparison between syntomic complex with coefficient in a locally free Fontaine-Laffaille module and complex of 𝑝-adic nearby cycles of the associated étale local system on the (rigid) generic fiber. Proofs of aforementioned results can be found in [Abh22].
記述: This article is an expanded version of my talk at RIMS conference Algebraic Number Theory and related topics 2022.
URI: http://hdl.handle.net/2433/291160
関連リンク: https://www.rs.tus.ac.jp/a25594/rimsant2022.html
出現コレクション:2269 代数的整数論とその周辺

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。