このアイテムのアクセス数: 18
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
jccjie.2024-0012.pdf | 1.62 MB | Adobe PDF | 見る/開く |
タイトル: | A Study of Deep Learning for Quantitative Analysis of Vitamin A in Cattle Blood |
著者: | Shibasaki, Mizuki Suzuki, Tetsuhito Fukushima, Moriyuki Nagaoka, Shin-ichi Ogawa, Yuichi Kondo, Naoshi |
著者名の別形: | 芝崎, 美月 鈴木, 哲仁 福島, 護之 長岡, 伸一 小川, 雄一 近藤, 直 |
キーワード: | Deep learning Neural network Fluorescence excitation-emission spectroscopy Vitamin A Retinol Cattle blood random forest |
発行日: | 2024 |
出版者: | Society of Computer Chemistry, Japan |
誌名: | Journal of Computer Chemistry, Japan -International Edition |
巻: | 10 |
論文番号: | 2024-0012 |
抄録: | Deep learning in combination with fluorescence excitation-emission spectroscopy was studied to quantitatively analyze vitamin A (retinol) in cattle blood. The neural network model being obtained with the deep learning predicted the vitamin-A levels with a coefficient of determination (R²) of 0.93 with respect to the experimental values. The combination of the deep learning and fluorescence excitation-emission spectroscopy has a potential to predict the vitamin-A level in the cattle blood accurately, rapidly and inexpensively and to improve production of marbled beef with maintaining cattle health. It could also be applied to quantitative vitamin-A assays of various biological tissues, foods and so on as well as to those of blood samples besides cattle. |
著作権等: | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (CC BY-NC-ND) 4.0 License. |
URI: | http://hdl.handle.net/2433/291282 |
DOI(出版社版): | 10.2477/jccjie.2024-0012 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス