このアイテムのアクセス数: 18

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
jccjie.2024-0012.pdf1.62 MBAdobe PDF見る/開く
タイトル: A Study of Deep Learning for Quantitative Analysis of Vitamin A in Cattle Blood
著者: Shibasaki, Mizuki
Suzuki, Tetsuhito
Fukushima, Moriyuki
Nagaoka, Shin-ichi
Ogawa, Yuichi
Kondo, Naoshi
著者名の別形: 芝崎, 美月
鈴木, 哲仁
福島, 護之
長岡, 伸一
小川, 雄一
近藤, 直
キーワード: Deep learning
Neural network
Fluorescence excitation-emission spectroscopy
Vitamin A
Retinol
Cattle blood
random forest
発行日: 2024
出版者: Society of Computer Chemistry, Japan
誌名: Journal of Computer Chemistry, Japan -International Edition
巻: 10
論文番号: 2024-0012
抄録: Deep learning in combination with fluorescence excitation-emission spectroscopy was studied to quantitatively analyze vitamin A (retinol) in cattle blood. The neural network model being obtained with the deep learning predicted the vitamin-A levels with a coefficient of determination (R²) of 0.93 with respect to the experimental values. The combination of the deep learning and fluorescence excitation-emission spectroscopy has a potential to predict the vitamin-A level in the cattle blood accurately, rapidly and inexpensively and to improve production of marbled beef with maintaining cattle health. It could also be applied to quantitative vitamin-A assays of various biological tissues, foods and so on as well as to those of blood samples besides cattle.
著作権等: This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (CC BY-NC-ND) 4.0 License.
URI: http://hdl.handle.net/2433/291282
DOI(出版社版): 10.2477/jccjie.2024-0012
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons