このアイテムのアクセス数: 69
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.amc.2024.129219.pdf | 628.12 kB | Adobe PDF | 見る/開く |
タイトル: | Convergence analysis of a regularized Newton method with generalized regularization terms for unconstrained convex optimization problems |
著者: | Yamakawa, Yuya ![]() Yamashita, Nobuo ![]() ![]() |
著者名の別形: | 山川, 雄也 山下, 信雄 |
キーワード: | Unconstrained convex optimization Regularized Newton method Generalized regularization Global 𝓞(𝑘⁻²) convergence Superlinear convergence Local convergence |
発行日: | 15-Apr-2025 |
出版者: | Elsevier BV |
誌名: | Applied Mathematics and Computation |
巻: | 491 |
論文番号: | 129219 |
抄録: | This paper presents a regularized Newton method (RNM) with generalized regularization terms for unconstrained convex optimization problems. The generalized regularization includes quadratic, cubic, and elastic net regularizations as special cases. Therefore, the proposed method serves as a general framework that includes not only the classical and cubic RNMs but also a novel RNM with elastic net regularization. We show that the proposed RNM has the global 𝓞(𝑘⁻²) and local superlinear convergence, which are the same as those of the cubic RNM. |
著作権等: | © 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license. |
URI: | http://hdl.handle.net/2433/291659 |
DOI(出版社版): | 10.1016/j.amc.2024.129219 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス