このアイテムのアクセス数: 19
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2024-10.pdf | 2.7 MB | Adobe PDF | 見る/開く |
タイトル: | Minimal resultant locus and its moduli theoretic characterization in non-archimedean dynamics |
著者: | Okuyama, Yûsuke |
著者名の別形: | 奥山, 裕介 |
発行日: | Jan-2025 |
出版者: | 京都大学数理解析研究所 |
誌名: | 代数幾何学シンポジウム記録 |
巻: | 2024 |
開始ページ: | 107 |
終了ページ: | 111 |
抄録: | Let φ be a rational function (of degree more than 1) on the projective line ℙ¹ over an algebraically closed and complete non-trivial and non-archimedean valued field 𝘒, which is an endomorphism of ℙ¹. The degree of the reduction of φ modulo the maximal ideal in the ring of 𝘒-integers is less than or equal to that of φ, and we say φ has a good reduction if the equality holds. A conjugacy of φ under some projective transformation of ℙ¹ can have a good reduction even if so does not φ. The minimal resultant locus for φ is a dynamical equivariant which measures how far φ is from having a good reduction, up to conjugations of it under projective transformations. In this talk, after reviewing the foundational moduli theoretic works by Rumely, Szpiro-Tepper-Williams, Silverman, ... on the minimal resultant locus (to characterize the minimum resultant locus as the potential GIT-semistable locus), we introduce the hyperbolic resultant function for φ on the Berkovich projective line over 𝘒 and the intrinsic depths of the intrinsic reduction of φ at each point of the Berkovich projective line. The main result is the moduli theoretic characterization of the minimal resultant locus of φ using the Berkovich hyperbolic geometry. |
記述: | 於 京都大学理学研究科セミナーハウス (2024年10月22日-10月25日) 2024年度科学研究費補助金 基盤研究(A)(課題番号 20H00111, 代表 小木曽啓示) 2024年度科学研究費補助金 基盤研究(A)(課題番号 21H04429, 代表 並河良典) Date : October 22nd - 25th, 2024 Location: Kyoto University (North Campus), Science Seminar House JSPS KAKENHI Grant-in-Aid (A) 20H00111 (Keiji Oguiso) JSPS KAKENHI Grant-in-Aid (A) 21H04429 (Yoshinori Namikawa) Organizers: Yohsuke Matsuzawa, Yusuke Nakamura, Kazuhiko Yamaki |
URI: | http://hdl.handle.net/2433/292384 |
関連リンク: | https://sites.google.com/view/kinosaki2024/ |
出現コレクション: | 2024 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。